clear presentations with words of explanation Quiz 312.5-13.2 and all work shown is expected

Show work clearly with good presentation and words of explanation.
(5 points each)

1) Find and equation of the plane containing points $(3,-2,4),(-5,6,0)$ and $(1,5,4)$

Need point (use any of them) $P(3,-2,4)$
normal vector

$$
\vec{n}=\overrightarrow{P Q} \times \overrightarrow{P R}=
$$

So plane 15° :

$$
\begin{aligned}
& 28(x-3) \div 8(y+2)-40(z-y)=0 \\
& \text { ry multiple of this }
\end{aligned}
$$

or any multiple of this

$$
7 x+2 y-10 z+23=0
$$

Note: easy to Check P, Q, R on plane
2) Find the point where the line through $(-1,-4,5)$ and $(3,4,-1)$ intersects the plane $x+2 y-z+1=0$. Include a screen shot of a computer generated graph of the points, line and plane (rotate to show useful view).
You may use any software you like, but the command on geogebra for point ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) and direction vector ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) is
Line $[(x, y, z)$, Vector $[(a, b, b)]] \rightarrow$ see next page
Line : point $(-1,-4,5)$

$$
\begin{aligned}
& \text { point }(-1,-4,5) \\
& \vec{V}=\overrightarrow{P Q}=\{4,8,-4\rangle
\end{aligned} \Rightarrow\left\{\begin{array}{l}
x=-1+4 t \\
y=-4+8 t \\
z=5-6 t
\end{array}\right.
$$

intersects plane?

$$
x+2 y-z+1=0
$$

substitute line equections into p lane

$$
\begin{aligned}
& -1+4 t+2(-4+8 t)-(5-6 t)+1=0 \\
& 26 t-13=0 \\
& t=1 / 2
\end{aligned} \rightarrow \text { intoline }(1,0,2)
$$

Graph for \#2. The point here is to see whether your answer seems right based on what the graph shows you.
My graph helped me catch a mistake I made on my first attempt at this problemiec cay se the point A was not on the plane.
3) Sketch a graph of the following surface in R3.

- Name the surface and give pertinent information such as traces.
- Use small grids for traces if needed
- Show scale and label axes.

You must show an accurate elliptical cross section as discussed in 12.6 video 1 @ 30:40

$$
x^{2}-y^{2}+\frac{z^{2}}{4}=1
$$

Name of surface: hyperbolod_I sheet
$y=0$

$$
x^{2}+\frac{z^{2}}{4}=1
$$

$y=2$
$x^{2}-4+\frac{z^{2}}{4}=1$ $x^{2}+\frac{z^{2}}{4}=5$ $\frac{x^{2}}{5}+\frac{z^{2}}{20}=1$

4) Find the equations for the line tangent to the curve $\vec{r}(t)=\left\langle\cos (2 \pi t), t^{3}, \sqrt{t+7}\right\rangle$ at the point $(1,8,3) \quad$ (Hint, what is the value of t which corresponds to the given point)

Line:

$$
\text { Point }(1,8,3)
$$

$$
\vec{v}=\vec{r}^{\prime}(2)=\left\{0,12, \frac{1}{3}\right\rangle
$$

$$
\begin{aligned}
& x=1 \\
& y=8+12 t \\
& z=3+\frac{1}{6} t
\end{aligned}
$$

$$
\begin{gathered}
(1,8,3)=\left(\cos 2 \pi t, t^{3}, \sqrt{t+7}\right) \\
t^{3}=\varepsilon \\
t=2 \\
\vec{r}(2)=\{1,8,3\rangle \\
\vec{r}^{\prime}(t)=\left\{-2 \pi \sin 2 \pi t, 3 t^{2}, \frac{1}{2 \sqrt{t}\rangle}\right\}
\end{gathered}
$$

