Clear presentations with words of explanation Quiz 3 12.5-13.2 and all work shown is expected

Show work clearly with good presentation and words of explanation. (5 points each)

1) Find and equation of the plane containing points (3,-2,4), (-5,6,0) and (1,5,4)

	PQR
Need point (use any of them)	01-
normal vector	P(3,-2,4)
n= PQ *PR=	\vec{i} \vec{i} \vec{k}
So plane is:	= [28,8-40]
28(X-3) + 8(Y+2) - 4A(2)	-8 8 -4 Check (+-
or any multiple of this	-27 0 this orthogon
Note: easy to check P.Q.R on plane	to BOTH POLPR?
2) Find the point where the line through (-1, -4) x+2y-z+1 = 0. Include a screen shot of points, line and plane (rotate to show un You may use any software you like, but the con- and direction vector (a,b,c) is Line[(x,y,z), Vector[(a,b,c)]]	4, 5) and (3,4,-1) intersects the plane a computer generated graph of the iseful view). mmand on geogebra for point (x,y,z) r = -1 + 4t r = -4 + 8t r = -6t
Intersects plane?	
Substitute line equeetion	1=0 ns into plane
-1+4++ 2 (-4+2+)	-(5-6t)+1=0
26+-13=0	LINC
t=1/2 -	(1,0,2)
/	

Graph for #2. The point here is to see whether your answer seems right based on what the graph shows you. My graph helped me (atch a mistake I made on my first attempt at this problem because the point A was not on the plane.

3) Sketch a graph of the following surface in R3.

- Name the surface and give pertinent information such as traces.
 - Use small grids for traces if needed
- Show scale and label axes.

You must show an **accurate** elliptical cross section as discussed in 12.6 video 1 @ 30:40

4) Find the equations for the line tangent to the curve $\bar{r}(t) = \langle \cos(2\pi t), t^3, \sqrt{t+7} \rangle$ at the point (1,8,3) (Hint, what is the value of t which corresponds to the given point) (1,8,3) = ($\cos 2\pi t$, t^3 , $\sqrt{t+7}$) Line: $t^3 = 8$ $f^2(t) = f(t) = f(t), 8,3$ $\chi = 1$ $\chi = 8 + 12 + 2$ $\chi = 3 + \frac{1}{2}$